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Hillary Sardiñas25, Amber Sciligo26, Carsten Thies27, Teja Tscharntke28, Eric Venturini29,
Eve Veromann30, Ines Vollhardt31, Felix Wäckers32, Kimiora Ward3, Andrew Wilby33,
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Abstract

Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services.

However, a comprehensive assessment of the e↵ectiveness of di↵erent floral plantings, their characteristics and consequences for

crop yield across global regions is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control and

pollination services in adjacent crops using a global dataset of 529 sites. Flower strips, but not hedgerows, enhanced pest control

services in adjacent fields by 16% on average. However, e↵ects on crop pollination and yield were more variable. Our synthesis

identifies several important drivers of variability in e↵ectiveness of plantings: pollination services declined exponentially with

distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more

e↵ectively. These findings provide promising pathways to optimize floral plantings to more e↵ectively contribute to ecosystem

service delivery and ecological intensification of agriculture in the future.

INTRODUCTION

Meeting the increasing demands for agricultural products while minimizing negative impacts on biodiversity
and ecosystem health is among the greatest global challenges (Godfray et al. 2010). Intensive agricultural
production and the simplification of agroecosystems threaten farmland biodiversity and associated ecosystem
services worldwide (Foley et al. 2005; IPBES 2016, 2018, 2019). Concerns over loss of biodiversity and asso-
ciated impairment of ecosystem services have helped strengthen the implementation of agri-environmental
schemes and other measures to mitigate such negative consequences (IPBES 2016). Beyond restoration of
farmland biodiversity in general, an implicit or explicit goal of such measures is to foster sustainable agri-
cultural production through ecological intensification by harnessing biodiversity-based ecosystem services,
such as crop pollination and natural pest control services (Bommarco et al.2013; Pywell et al. 2015; Kovács-
Hostyánszki et al. 2017). In intensively managed agroecosystems, the establishment of strips or other areas of
flowering herbaceous plants, hereafter “flower strips”, and hedgerows are among the most commonly applied
measures to achieve these goals (Scheper et al. 2015; Tschumi et al. 2015; Williams et al. 2015; Dainese et
al . 2017; Kremen et al. 2019). For example, the establishment of flower strips or hedgerows is supported
by the Common Agricultural Policy (CAP) in the European Union and by the Farm Bill (e.g., programs of
the Natural Resources Conservation Service of the United States Department of Agriculture) in the United
States (IPBES 2016; Kovács-Hostyánszki et al. 2017; Venturini et al. 2017a). Typically established along field
edges, flower strips and hedgerows provide green infrastructure for farmland biodiversity, o↵ering resources
for pollinators and natural enemies of crop pests such as shelter, oviposition sites, overwintering opportu-
nities and food resources (Tschumi et al. 2015; Hollandet al. 2016; Kremen et al. 2019). There are now
multiple demonstrations of such floral plantings locally increasing the abundance and diversity of pollinators
and natural enemies of crop pests (Haalandet al. 2011; Scheper et al. 2013; M’Gonigle et al.2015; Williams
et al. 2015; Tschumi et al. 2016; Sutteret al. 2017, 2018; Kremen et al. 2019). It is less well understood
whether and at what spatio-temporal scales the enhanced species diversity translates to ex situ provisioning
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of pollination, pest control and increased yield. The ‘exporter’ hypothesis (Morandin & Kremen 2013; Kre-
men et al. 2019) predicts a facilitative e↵ect of floral plantings and enhanced delivery of ecosystem services
through functional spillover (sensu Blitzeret al. 2012; see also Albrecht et al. 2007; Morandin & Kremen
2013; Pywell et al. 2015; Tschumi et al. 2015, 2016; Sutter et al. 2017). Enhanced service provisioning may,
however, not necessarily lead to increased crop yield, as a multitude of agricultural management practices
such as fertilization, level of pesticide use, pest pressures, and soil cultivation may mask positive e↵ects of
services on yield (e.g., Gagic et al. 2017; Sutteret al. 2018). However, according the ‘concentrator’ hypothesis
(Kremen et al. 2019; also referred to as the ‘aggregation’ hypothesis (Venturini et al. 2017a) or the ‘Circe
principle’ (Landeret al. 2011)), resource-rich floral plantings temporarily compete with flowering crops and
concentrate pollinators and natural enemies from the surrounding agriculture into the floral plantings, po-
tentially resulting in (transiently) reduced crop pollination and pest control services (Nicholson et al. 2019).
This may explain why plantings fail to enhance crop pollination or natural pest control services, even if
they successfully promote local pollinator or natural enemy abundance in restored habitats (e.g., Phillips &
Gardiner 2015; Tscharntkeet al. 2016; Karp et al. 2018).

The lack of clarity about e↵ects of flower plantings on ecosystem service provisioning and crop yield scattered
in numerous case studies is a barrier to farmer adoption of such measures (Garbach & Long 2017; Kleijn
et al. 2019). A quantitative synthesis of such demonstrated broad evidence may assist farmers in making
the decision to adopt these measures (Garbach & Long 2017; Kleijn et al. 2019). Moreover, it is important
to gain a general understanding of whether such e↵ects are restricted to the area of the crop near to the
adjacent planting (Ganseret al. 2019) or be detectable over larger distances (Tschumiet al. 2015). Such
knowledge should be considered when designing schemes with optimal spatial arrangement of plantings
across agricultural landscapes (Ricketts et al. 2008; Garibaldi et al. 2011), and to facilitate cost-benefit
assessments (Blaauw & Isaacs 2014; Morandin et al. 2016 Dainese et al. 2017; Haanet al. 2020; Williams et
al. 2019).

To improve the e↵ectiveness of flower strip and hedgerow plantings in promoting crop pollination, natural
pest control, and potentially crop production, we need to better understand what determines their failure or
success. We hypothesize that at least three factors influence the e↵ectiveness of floral plantings in enhancing
crop pollination and pest control services: plant diversity, time since establishment and landscape context.
First, theory predicts that higher plant species richness, and associated trait diversity, promotes diverse
pollinator and natural enemy communities due to positive selection and complementarity e↵ects across
space and time (e.g., Campbell et al. 2012; Scheper et al. 2013; Sutter et al. 2017; M’Gonigle et al. 2017).
However, the role of plant diversity for driving e↵ects of floral plantings on pollination and natural pest
control services benefits to nearby crops is poorly understood. Second, time since the establishment of floral
plantings is likely to play a key role for the local delivery of crop pollination and pest control services (Thies
& Tscharntke 1999). This is of particular relevance for sown flower strips that may range from short-lived
annual plantings to longer-lived perennial plantings. Perennial plantings should o↵er better overwintering and
nesting opportunities for pollinators and natural enemies (Ganser et al. 2019; Kremen et al. 2019). Thus, the
potential contribution of floral plantings to local population growth of wild pollinators and natural enemies
might increase over time (e.g., Blaauw & Isaacs 2014; Venturini et al. 2017b). Third, the e↵ectiveness of
floral plantings could depend on the agricultural landscape context. At intermediate simplification levels
source populations should be available and the ecological contrast (Scheperet al. 2013) of a local measure
great enough to be e↵ective (intermediate landscape complexity theory; Tscharntke et al. 2005; Kleijn et
al. 2011). While support for this hypothesis has been found with respect to biodiversity restoration (e.g.,
Bátary et al. 2011; Scheper et al. 2013, 2015; but see e.g. Ho↵mannet al. 2020), its validity for ecological
intensification and the local delivery of crop pollination and pest control services has only just begun to be
explored (Jonsson et al. 2015; Grab et al. 2018; Rundlöf et al. 2018).

Here we use data from 35 studies including 868 service-site-year combinations across 529 sites in North Ame-
rican, European and New Zealand agroecosystems to quantitatively assess the e↵ectiveness of two of the most
commonly implemented ecological intensification measures, flower strips and hedgerows, in promoting crop
pollination, pest control services and crop production. Moreover, we aim to better understand the key fac-
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tors driving failure or success of these measures to suggest improvement of their design and implementation.
Specifically, we address: (1) the extent to which flower strips and hedgerows enhance pollination and pest
control services in adjacent crops; (2) how service provisioning changes with distance from floral plantings;
(3) the role of plant diversity and time since establishment of floral plantings in promoting pollination and
pest control services; (4) whether simplification of the surrounding landscape modifies the responses; and (5)
whether floral plantings enhance crop yield in adjacent fields.

Our synthesis reveals general positive e↵ects of flower strips but not hedgerows on pest control services in
adjacent crop fields. E↵ects on crop pollination, however, depended on flowering plant diversity and age
since establishment, with more species-rich and older plantings being more e↵ective. However, no consistent
impacts of flower strips on crop yield could be detected, highlighting the need for further optimizations of
plantings as measures for ecological intensification.

MATERIALS AND METHODS

Data collection

To identify datasets suitable to address our research questions, we performed a search in the ISI Web of
Science and SCOPUS (using the search string provided in Appendix S1; records published until 31.12.2017
were considered). To minimise potential publication bias (i.e., the file drawer problem, Rosenthal 1979) and
to maximise the number of relevant datasets we also searched for unpublished data by contacting potential
data holders through researcher networks. Datasets had to meet the following requirements to be included in
the analysis: (i) pollination and/or pest control services in crops were measured in both crop fields adjacent
to floral plantings and control fields without planting; (ii) the replication at the field level was [?] six
fields per study (three fields with plantings and three without; i.e., disqualifying small-scaled plot treatment
comparisons within fields). We contacted data holders fulfilling these requirements and requested primary
data on plant species richness of plantings, time since establishment, landscape context and crop yield (see
below) in addition to measured pollination and pest control services. Overall, we analysed data from 35
studies. We here define a study as a dataset collected by the same group of researchers for a particular
crop species and ecosystem service (pest control or pollination) in a particular region during one or several
sampling years. We collected 18 pest control service and 17 pollination service studies, representing a total
of 868 service-site-year combinations across 529 sites (fields with or without adjacent floral planting; see
Supporting Table S1 for detailed information about studies). In eight of these studies (122 sites) both crop
pollination and pest control services were measured (Table S1).

Pollination services, pest control services and crop yield

As di↵erent studies used di↵erent methods and measures to quantify pollination services, pest control services
and crop yield, we standardised data prior to statistical analysis using z -scores (e.g., Garibaldi et al. 2013;
Dainese et al. 2019). The use of z -scores has clear advantages compared with other transformations or
standardization approaches (such as the division by the absolute value of the maximum observed level of
the measured response) because i ) average z -scores follow a normal distribution, and ii ) the variability
present in the raw data is not constrained as in other indices that are bound between 0 and 1 (Garibaldi et
al. 2013). Pollination services were measured as seed set (number of seeds per fruit), fruit set (proportion
of flowers setting fruit), pollen deposition rate (number of pollen grains deposited on stigmas within a
certain time period) and, in one study, flower visitation rate (number of visits per flower within a certain
time period). If available, di↵erences in pollination service measures of open-pollinated flowers and flowers
from which pollinators were excluded were analysed. Measures of pest control services were quantified as
pest parasitism (proportion of parasitized pests), pest predation (proportion of predated pests), population
growth (see below) or crop damage by pests or pest densities (see Supporting Table S2 for an overview of
pollination and pest control service measures across studies). Whenever possible, the pest control index
based on population growth proposed by Gardiner et al. (2009) was calculated and analysed (Supporting
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Table S2). Note that standardized values of pest density and crop damage were multiplied by -1 because
lower values of these measures reflect an increased pest control service (e.g., Karpet al . 2018). Crop yield
was only considered for the analysis if a direct measure of final crop yield was available. Too few studies
assessed crop quality which was therefore not considered further. Yield was measured as crop mass or number
of fruits produced per unit area. Due to a lack of studies measuring crop yield in fields with and without
adjacent hedgerows, the analysis of crop yield focused on e↵ects of flower strips. Crop yield measures were
available from a total of 12 flower strip studies and 194 fields (see Supporting Tables S1 and S2 for a detailed
description of study systems, crop yield measures and methods used across studies).

Descriptors of floral plantings and landscape context

Flower strips are here defined as strips or other areas of planted wild native and/or non-native flowering
herbaceous plants. Hedgerows are defined as areas of linear shape planted with native and/or non-native
at least partly flowering woody plants and typically also herbaceous flowering plants. For hedgerows, infor-
mation about the exact time since establishment and number of plant species was not available for most
studies. The analyses of these drivers (question 3) therefore focus on flower strip e↵ects on pollination and
pest control service provisioning. Information on plant species richness was available in 12 out of 18 pest
control studies and 10 out of 17 pollination studies. Whenever available, the species richness of flowering
plants was used. Otherwise, for some flower strip studies, the number of sown, potentially flowering plant
species (excluding grasses) was used. Time since establishment of flower strips, i.e., the time span between
seeding or planting and data sampling, was available for all studies ranging from 3 to 122 months.

The proportional cover of arable crops was available and analysed as a proxy for landscape simplification
(e.g., Tscharntke et al. 2005; Dainese et al. 2019) in 11 pest control and 12 pollination studies. Proportional
cover of arable crops was calculated in circular sectors of 1 km radius around focal crops, or 750 m or 500
m radius (two studies for which data on a 1 km radius were not available; see Table S1; results remained
qualitatively identical when only considering the 1 km radius datasets).

Statistical analysis

We used a mixed e↵ect-modelling approach to address our research questions. In all models, study was
included as a random intercept to account for the hierarchical structure of the data with field measures nested
within study. To assess whether flower strips and hedgerows enhanced pollination and pest control services in
adjacent crops (research question 1) linear mixed-e↵ect models with planting (field with or without planting)
were separately fitted for flower strips and hedgerows for the response variables pollination service and pest
control service. To test how the e↵ects on service provisioning change with distance (continuous variable;
meters) from plantings (question 2) and with landscape simplification (question 4) these explanatory variables
and their interactions with the fixed e↵ects described above were included in the models. Exploratory
analyses showed that neither distance nor landscape simplification e↵ects di↵ered between flower strips and
hedgerows; i.e., no significant interactive e↵ects of planting type with any of the tested fixed e↵ects. We
therefore pooled flower strip and hedgerow data in the final models, excluding planting type and its two or
three-way interactions as fixed e↵ects. In addition to linear relationships we tested for an exponential decline
of measured response variables from the border of the field by fitting log10(distance) in the linear mixed-e↵ect
models described above. In this case, field nested within study was included as a random e↵ect. To test
the intermediate landscape complexity hypothesis, we tested for linear as well as hump-shaped relationships
between landscape context, and its interaction with local floral plantings by fitting landscape variables as a
quadratic fixed predictor in the models described above (second degree polynomial functions). To present
the ranges covered by the agricultural landscape gradients, we did not standardize measures of landscape
simplification within studies (e.g., Martin et al.2019). To examine how pollination and pest control service
provisioning relates to flower strip plant diversity and time since establishment (question 3) plant species
richness and log10(number of months since establishment) were included as fixed e↵ects in models with study
as a random e↵ect. Using log(months since establishment) predicted the data better than establishment time
as linear predictor. Plant species richness and time since establishment of flower strips were not correlated (r
= 0.22). Only 10 studies measured services in several years since establishment (Table S1), and we included
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only data from the last sampling year. To assess how the presence of plantings a↵ected the agronomic yield of
adjacent crops (question 5), we fitted a linear mixed-e↵ect model with the same fixed and random structure
as described for question 1, but with crop yield as the response variable. Statistical analyses for di↵erent
models and response variables di↵ered in sample sizes as not all studies measured crop yield in addition
to pollination or pest control services (Tables 1, S1). In all models we initially included planting area as a
co-variate in an explorative analysis, but removed it in the final models, as it did not explain variation in
any of the models and did not improve model fit (not shown).

E↵ect sizes provided in the text and figures are model estimates of z-transformed response variables. For
statistical inference of fixed e↵ects we used log-likelihood ratio tests (LRT) recommended for testing signifi-
cant e↵ects of a priori selected parameters relevant to the hypotheses (Bolker et al. 2009). For all models,
assumptions were checked according to the graphical validation procedures recommended by Zuur et al.
(2009). All statistical analyses were performed in R version 3.5.2 (R Core Team 2017) using theR -package
lme4 (Bates et al. 2015).

RESULTS

E↵ects of floral plantings on pest control and pollination services

The provisioning of pest control services in crop fields adjacent to flower strips was enhanced by 16% on
average compared to fields without flower strips. On average, pest control services were also increased in
crops adjacent to hedgerows, but e↵ects were more variable and overall not statistically significant (Fig. 1;
Table 1). Pest control services declined exponentially with distance from the field edge, but the slopes of the
distance functions between fields with and without adjacent floral plantings did not di↵er (Fig. 2a; Table 1).

Crop pollination e↵ects were more variable across studies and overall not significantly di↵erent between crops
with or without adjacent floral planting across all studies and within-field distances (Fig 1; Table 1). However,
e↵ects of distance to field edge di↵ered for fields with floral plantings compared with control fields (significant
interaction between presence of planting and distance from field border; Table 1). Pollination services were
increased near floral plantings and decreased exponentially with increasing distance from plantings, while no
such e↵ect of distance to field edge was detected for control fields (Fig . 2b). The fitted distance curves for
fields with or without floral plantings intersected at 43 m (Fig. 2b).

The role of flowering plant diversity and time since establishment of flower strips

Crop pollination services, but not pest control services, tended to increase with flowering plant species
richness of the adjacent flower strip (52% predicted increase in crop pollination from 1 to 25 plant species
in adjacent flower strip; Fig. 3a; Table 1). Crop pollination services also tended to increase with time since
establishment of the adjacent flower strip, but showed a positive saturating relationship (Fig. 3b; Table 1).
Pollination services increased by 27% in two year old strips compared with the youngest plantings (roughly 3
months old), while the additional predicted increase from two to four years or older strips was approximately
5% on average (Fig. 3b; only few strips were older than four years, see Fig. 3b and explanations in figure
caption). Pest control services in crops adjacent to flower strips did not increase with flower strip age (Table
1).

E↵ects of landscape simplification

The model testing for a linear relationship between service provision and landscape simplification and its
interaction with local flower presence fitted the data better than a model testing for hump-shaped relation-
ships (Table S3). Pollination, but not pest control services, decreased linearly with landscape simplification
(12% decrease from 50 to 100% crops in the surrounding landscape), irrespective of the presence of a floral
planting (no significant floral planting x landscape simplification interaction; Fig 4; Table 1).
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E↵ects of flower strips on crop yield

Overall, no significant e↵ect of flower strips on yield in adjacent crops was detected (subset of 12 studies and
194 sites for which crop yield data was available; Fig. 5; Supplementary Table S4). Furthermore, no e↵ects
of within-field distance, plant species richness, time since establishment or landscape simplification, or their
interactions with flower strip presence on yield, were detected (Table S4).

DISCUSSION

Our quantitative synthesis demonstrates a generally positive e↵ect of flower strips on pest control services
but these e↵ects did not consistently translate into higher yields. Although in most cases beneficial e↵ects of
plantings were also found for crop pollination services, e↵ects on crop pollination and final crop yield were
variable and overall not significant. E↵ects of wildflower strips on pollination services increased with age
and species-richness and declined with increasing distance to hedgerows and flower strips suggesting that the
quality of plantings plays a pivotal role in e↵ective service provision. Our results indicate that floral plantings
have great potential to benefit ecosystem service provision, but to do so will need to be carefully tailored
for functioning at specific spatial scales. Flower diversity and strip age are important drivers through which
this can be achieved and they should be considered integrally before floral plantings can make a significant
contribution to the ecological intensification of agricultural production.

We found positive e↵ects of flower strips on ecosystem service provisioning in support of the ‘exporter’
hypothesis, although e↵ects were generally variable and only significant for flower strips enhancing pest
control services by 16% on average. This is an important finding as it provides general empirical evidence
that flower strips can reduce crop pest pressures across various crops, landscape contexts, and geographical
regions. One explanation for the more consistent positive e↵ects on pest control services of flower strips
compared to hedgerows may be that in many of the studied flower strips the selection of flowering plants
was tailored to the requirements of the target natural enemy taxa (Tschumi et al. 2015, 2016) while this
was generally less the case in the studied hedgerow plantings.

Wildflower plantings have been heralded as one of the most e↵ective measures to enhance the provision
of ecosystem service to crops (Kleijnet al. 2019) with many studies showing positive e↵ects on service
provisioning (e.g., Blaauw & Isaacs 2014; Tschumi et al.2015, 2016; included in this quantitative synthesis).
Our synthesis shows, however, that although general significant e↵ects of flower strips were found for pest
control service provisioning, e↵ects of plantings on crop pollination services were highly variable. This
highlights the need to better understand these conditions and drivers of success or failure of floral plantings
to promote pollination services. Our synthesis identifies several drivers that explain variability in delivered
services and therefore o↵ers pathways to enhance the e↵ectiveness of these measures in the future.

First, the success of flower strips to promote crop pollination services in adjacent fields increased with their
age. The strongest increase was detected up to roughly three years since the planting date. Pollination
services also appeared to continue to increase with establishment time beyond three years. This trend needs
to be interpreted with caution as only three studies assessed four years old or older flower strips highlighting
that scarcity of long-term data on the e↵ects of floral plantings on services provisioning and yield, which
represents as an important current knowledge gap. We found no evidence that this increase in e↵ectiveness
with age is driven by an increase in floral abundance with flower strip age, corroborating results of case
studies of Central and Northwestern European regions that suggest relative abundance and species richness
of flowering herbaceous plants in sown flower strips on the highly fertilized soils in these agroecosystems peak
in the second or third year and then decline again as grasses take over (Ste↵an-Dewenter & Tscharntke 2001;
Ganser et al. 2019). Rather, these findings are in agreement with the expectation that the build-up and
restoration of local crop pollinator populations need time (Blaauw & Isaacs 2014; Buhk et al. 2018; Kremen
et al.2018). They may also be explained by greater provision of nesting and overwintering opportunities
in older floral plantings (Kremen et al. 2019). Nesting and overwintering opportunities are likely scarce in
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short-lived annual flower strips, which could even be ecological traps for overwintering arthropods (Ganser et
al. 2019). In fact, Kremen & M’Gonigle (2015) found higher incidence of above-ground cavity nesting bees
compared to ground-nesting bees with hedgerow maturation, and Ganser et al. (2019) reported increased
overwintering of arthropod predators and pollinators of perennial compared to annual flower strips.

Second, our findings reveal that higher species richness of flowering plants tends to enhance pollination service
delivery in adjacent crops. This is an important finding as it indicates that restoring plant diversity can not
only promote rare pollinator species and pollinator diversity (cf. Scheper et al. 2013; Kremen & M’Gonigle
2015; Sutter et al. 2017; Kremen et al. 2018), but also crop pollination services. Flowering plant diversity
likely promotes complementary floral resources for a high number of pollinator taxa with di↵erent resource
needs. Furthermore, it should increase phenological coverage and continuity of floral resource availability
throughout the season (Schellhorn et al. 2015; M’Gonigle et al. 2017; Lundin et al. 2019). Our synthesis
reveals that floral plantings enhance pollination services, but only in the part of adjacent crops near to
plantings, while declining exponentially with distance to plantings (Fig. 2). In fact, the exponential decline
function predicts pollination service provisioning of less than 50% at 10 m and slightly more than 20% at 20
m compared to the level of service provisioning directly adjacent to plantings, partially explaining the overall
non-significant benefits when considering all measured distances across the entire field (Fig. 2). This may
also explain part of the high variability observed across studies and reconcile some of the contrasting findings
with respect to pollination service provisioning in studies measuring services relatively near plantings (e.g.
up to 15 m; Blaauw & Isaacs (2014), or up to larger distances, e.g. up to 200 m; Sardinas et al. (2013)).
Further possible reasons for the high variability in observed e↵ects of plantings on crop pollination services
may include variation in pollination services measures or dependency of crops on insect pollination

Consistent with previous studies (e.g., Dainese et al. 2019), landscape simplification was associated with
decreased pollination services, irrespective of the presence of floral plantings. In contrast, no such e↵ects were
detected for pest control services, in agreement with recent studies (Karp et al. 2018; Dainese et al.2019;
but see Veres et al. 2013; Rusch et al. 2016; Martinet al. 2019). The e↵ect of adding a flower strip or
hedgerow was, however, independent of landscape context. Although individual case studies (Jonsson et al.
2015; Grab et al. 2018; included in this synthesis) found support for the intermediate landscape hypothesis,
enhanced ecosystem services associated with floral plantings were not generally limited to moderately complex
landscape contexts across all studies considered here. The fact that positive impacts of floral plantings
occurred regardless of landscape context may encourage farmers to adopt these measures irrespective of the
type of landscape in which they are farming.

Crop yield is a↵ected by a complex interplay of a multitude of agricultural management practices such as
fertilization, level of pesticide use, pest pressures, soil cultivation and other factors such as local soil and
climatic conditions (e.g., Bartomeus et al.2013; Gagic et al. 2017), which can potentially mask benefits from
improved natural pest regulation or pollination services (Sutteret al. 2018). Positive e↵ects of floral plantings
have been shown by some case studies included in this synthesis (e.g., Tschumiet al. 2016; see also Pywell et
al. 2015), although sometimes only several years after the establishment of plantings (Blaauw & Isaacs 2014;
Morandin et al. 2016; Venturini et al. 2017b), but we did not detect consistent e↵ects on crop yield associated
with adjacent floral plantings. The identified drivers of the e↵ectiveness of floral plantings to enhance crop
pollination services, such as age and flowering plant diversity, could provide promising pathways towards
optimizing plantings as measures contributing to ecological intensification. Future optimizations should also
consider the potential for synergistic interactions of enhanced pollination and pest control services by “multi-
service” designs of plantings (Sutter & Albrecht 2016; Morandin et al. 2016), temporal dynamics (Blaauw
& Isaacs 2014; M’Gonigle et al. 2015), optimized ratios of floral planting (contributing to ecosystem service
supply) to crop area (a↵ecting service demand; Kremen et al. 2019; Williamset al. 2019), and the distance-
dependency of services quantified by this synthesis. However, floral plantings are also established for other
goals than yield increase. From an environmental and health perspective, keeping yield levels constant
despite reductions of insecticide input through replacement by enhanced natural pest regulation services by
floral plantings should be considered as a great achievement (e.g., Tschumi et al. 2015). Moreover, floral
plantings contribute to biodiversity conservation (e.g. Haaland et al . 2011; Scheper et al . 2013), but
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farmers are often reluctant to adopts such measures due to concerns of negative e↵ects on crop yield e.g.
due to spillover of pests. Our findings of similar crop yield in fields with and without plantings can dispel
such concerns.

Conclusions and implications

Our synthesis demonstrates enhanced natural pest control services to crops adjacent flower strips plantings,
across a broad suite of regions, cropping systems and types of flower strips studied. However, it also reveals
inconsistent and highly variable e↵ects of flower strips and hedgerows on crop pollination services and yield.
This highlights a strong need to identify the key factors driving this variability and the e↵ectiveness of
di↵erent types of floral plantings in contributing to ecosystem service delivery. Informed by such improved
understanding, the design, implementation and management of floral plantings can increase their e↵ectiveness
as measures for ecological intensification. This synthesis identifies several promising pathways towards more
e↵ective floral plantings for the provision of ecosystem services and ecological intensification: the modelled
exponential distance-decay function of pollination service provisioning by floral plantings into crop field
helps to predict service provision in crop fields; together with the lack of a strong planting area e↵ect,
our findings suggest that a dense spatial network of relatively small plantings will be more e↵ective than
a few large ones to optimize pollination service provisioning. Moreover, it identifies important drivers of
the e↵ectiveness related to type and composition of floral plantings for delivery of crop pollination services:
flowering plant diversity and age. Based on these findings we strongly encourage the promotion of perennial
floral plantings that ensure the availability of high floral diversity across several years as promising pathways
towards optimized measures for ecological intensification.
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Additional Supporting Information may be downloaded via the online version of this article at Wiley Online
Library (www.ecologyletters.com).

As a service to our authors and readers, this journal provides supporting information supplied by the authors.
Such materials are peer-reviewed and may be re-organized for online delivery, but are not copy-edited or
typeset. Technical support issues arising from supporting information (other than missing files) should be
addressed to the authors.

TABLES AND TABLE LEGENDS

Table 1. Summary of results of linear and generalized linear mixed-e↵ects models testing the e↵ects of
presence and type of floral plantings (flower strips and hedgerows) on crop pollination and natural pest con-
trol services, and how e↵ects are influenced by in-field distance, local planting characteristics and landscape
context. Response variables, explanatory variables, estimates, numerator degrees of freedom and denomi-
nator degrees of freedom (Df), di↵erences in log-likelihood for chi-squared tests (LRT) and P values (P<
0.05 in bold; P [?] 0.05 < 0.10 in bold italic) are shown for each model. Note that e↵ects of local drivers
(i.e., flowering plant species richness and time since establishment) considered only crops adjacent to flower
strips.

Hosted file

image1.emf available at https://authorea.com/users/309032/articles/440047-global-synthesis-of-
the-effectiveness-of-flower-strips-and-hedgerows-on-pest-control-pollination-services-and-
crop-yield

FIGURES AND FIGURE LEGENDS

Figure 1. Forest plot showing e↵ects of flower strips and hedgerows on pollination and pest control service
provisioning in adjacent crops compared to control crops without adjacent floral plantings. Squares illustrate
predicted mean e↵ects (z-score estimates), bars show 95% confidence intervals (CIs). On average, pest control
services were enhanced by 16% (z-score: 0.25) in fields with adjacent flower strip compared to control fields.
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Figure 2. Predicted relationships between (a) mean natural pest control service and (b) mean crop
pollination service (z-scores (solid lines) ± 95% CI (dashed lines)) and in-field distance to field border for
field with (red lines; dots) or without adjacent floral planting (black lines, triangles).
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Figure 3. Predicted relationships between mean crop pollination service (z-scores (fat solid lines) ± 95%
CI (fine solid lines)) and(a) flowering plant species richness and (b) time since establishment of adjacent
flower strips. Predicted relationship and results of an analysis without the points representing flower strips
older than four years were qualitatively identical.
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Figure 4. Predicted relationship between mean (a) pest control and (b) crop pollination service (z-scores
(solid lines) ± 95% CI (dashed lines)) and landscape simplification (percentage of arable crops in the lands-
cape) in fields with adjacent floral planting (red line; red circles) or without planting (black line; black
triangles). Pollination services, but not pest control services, declined with landscape simplification; the
slight di↵erences in slopes for pollination-landscape simplification relationships of fields with or without
adjacent plantings were statistically not significant.

Figure 5 Mean predicted crop yield (z-scores; ± 95% CI) of fields with adjacent flower strips (red circles)
and control fields without adjacent flower strip (black triangles). The dataset includes a subset of 12 studies
and 194 sites.
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